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HYDROGEN ISOTOPE SEPARATION BY BIPOLAR ELECTROLYSIS WITH 
c OUNTE RCURRENT ELECTROLYTE FLOW" 

D.  W. Ramey, M.  P e t e k ,  R. D .  T a y l o r ,  F. W. F i s h e r ,  E. H .  Kobisk, 
J .  Ramey and C .  A.  Sampson 

Oak Ridge N a t i o n a l  Labora tory  
S o l i d  S t a t e  D i v i s i o n  

P o s t  O f f i c e  Box X 
Oak Ridge, Tennessee 37830 

ABSTRACT 

S e p a r a t i o n  of hydrogen i s o t o p e s  h a s  been s u c c e s s f u l l y  
demonsLrated u s i n g  b i p o l a r  e l e c t r o l y s i s  combined with e l e c t r o -  
l y t e  f low c o u n t e r c u r r e n t  t o  t h e  t r a n s p o r t  of hydrogen i s o t o p e  
s p e c i e s .  Use of  m u l t i b i p o l a r  e l e c t r o d e  c e l l s  i n  a squared-off 
cascade  is  shown t h e o r e t i c a l l y  t o  be capable  t o  e f f i c i e n t  
t r i t i u m  s e p a r a t i o n .  
c e l l s  and a n a l y s i s  of  t h e i r  o p e r a t i o n  by McCabe-Thiele tech-  
n i q u e s  i s  d e s c r i b e d .  

Experimental  o p e r a t i o n  of m u l t i b i p o l a r  

INTRODUCTION 

B i p o l a r  e l e c t r o l y s i s  u s i n g  an e l e c t r o d e  t h a t  is permeable 

t o  hydrogen h a s  been sugges ted  (1-6) a s  a p o s s i b l e  method f o r  

t h e  s e p a r a t i o n  of  hydrogen i s o t o p e s .  It  is  t h e  c h a r a c t e r  of  t h e  

b i p o l a r  e l e c t r o l y t i c  process  t h a t  m u l t i p l e  s e p a r a t i o n  of hydro- 

gen i s o t o p e s  can be r e a l i z e d  w i t h i n  a s i n g l e  e l e c t r o l y s i s  c e l l  

w i t h  t h e  formation of gases  o n l y  a t  t h e  t e r m i n a l  anode and 

Research sponsored by t h e  D i v i s i o n  of  Waste P r o d u c t s ,  O f f i c e  

o f  Nuclear  Waste Management, U .  S. Department of Energy, under 

c o n t r a c t  W-7405-eng-26 w i t h  t h e  Union Carbide Corpora t ion .  
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RAMEY ET AL. 406 

ca thode .  T h i s  technique  o f f e r s  a much s i m p l i f i e d  m a t e r i a l  f low 

between s e p a r a t i o n  s t a g e s  as compared t o  convent iona l  e l e c t r o l y -  

s i s ,  where gaseous products  evolve  from e v e r y  s e p a r a t i o n  s t a g e  

and subsequent ly  must be conver ted  t o  water  b e f o r e  e n t e r i n g  t h e  

a d j a c e n t  s t a g e s .  An a d d i t i o n a l  major advantage of t h e  b i p o l a r  

p r o c e s s  i s  t h e  a b i l i t y  t o  consume l e s s  power than  convent iona l  

e l e c t r o l y s i s  having e q u i v a l e n t  s e p a r a t i v e  c a p a b i l i t y .  

I f  a conduct ive  b a r r i e r  i s  i n s e r t e d  between t h e  t e r m i n a l  

e l e c t r o d e s  of  a c o n v e n t i o n a l  e l e c t r o l y s i s  c e l l  i n  such a way as 

t o  i s o l a t e  one e l e c t r o d e  from t h e  o t h e r ,  t h e  b a r r i e r  i s  forced  

t o  a c t  both a s  an anode and ca thode ,  i . e . ,  t o  become " b i p o l a r . "  

A b i p o l a r  e l e c t r o d e  m a t e r i a l  such a s  Pd-25 w t .  % Ag can  r e a d i l y  

s o r b  and d i f f u s e  hydrogen, so t h a t  molecular  hydrogen w i l l  not 

form a t  t h e  cathode i n t e r f a c e .  A t  t h e  anode s u r f a c e  t h e  

d i f f u s e d  hydrogen atoms a r e  o x i d i z e d  t o  form water  wi th  t h e  

hydroxyl  ion  p r e s e n t  i n  t h e  e l e c t r o l y t e  ( s e e  F ig .  1) .  The 

e l e c t r o d e  p r o c e s s e s  and t h e  permeat ion of hydrogen through t h e  

b i p o l a r  e l e c t r o d e  favor  l i g h t e r  i s o t o p e s  and t h e r e f o r e  i s o t o p e  

s e p a r a t i o n  r e s u l t s .  

- e- c- 

( + I  

OH- t 

FIGURE 1. Hydrogen t r a n s f e r  mechanisms occur  a t  and i n  t h e  
b i p o l a r  e l e c t r o d e .  
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Hydrogen i s o t o p e  s e p a r a t i o n  with a Pd-25% Ag b i p o l a r  

e l e c t r o d e  r e p r e s e n t s  a modif ied c a s e  of normal e l e c t r o l y t i c  

hydrogen i s o t o p e  s e p a r a t i o n .  Because of t h e  d i f f e r e n t  mass 

t r a n s f e r  mechanisms involved,  a d i f f e r e n t  s e p a r a t i o n  f a c t o r  from 

t h a t  observed dur ing  normal e l e c t r o l y s i s  may r e s u l t .  The 

exper imenta l  measurements of deuter ium-t r i t ium s e p a r a t i o n  

f a c t o r s  (CXDT) obta ined  a t  t h r e e  d i f f e r e n t  tempera tures  and a t  

c u r r e n t  d e n s i t i e s  of  0 . 2 1 ,  0 . 3 6 ,  and 0.50 A cm-2 a r e  given i n  

Table  1 .  These d a t a  r e p r e s e n t  t h e  average v a l u e s  of twenty-f ive 

i n d i v i d u a l  measurements. 

c u r r e n t  d e n s i t y  was found, and only  small dependence on 

tempera ture  was observed.  Severa l  measurements of t h e  hydrogen- 

tritium s e p a r a t i o n  f a c t o r ,  "HT ( s e e  Table  l ) ,  were performed 

w i t h  l i t t l e  o r  no tempera ture  dependence being noted.  

The magnitude of t h e  b i p o l a r  s e p a r a t i o n  f a c t o r  is  approxi- 

No s i g n i f i c a n t  dependence of "DT on 

mate ly  t h e  same as f o r  normal e l e c t r o l y s i s .  However, t h e  normal 

e l e c t r o l y s i s  s e p a r a t i o n  f a c t o r  i s  more dependent on tempera ture  

t h a n  t h e  b i p o l a r  e l e c t r o l y s i s  s e p a r a t i o n  f a c t o r .  It is  

suspec ted  t h a t  t h i s  phenomenon i s  a t t r i b u t e d  t o  t h e  d i f f e r e n t  

mass t r a n s f e r  mechanisms of b i p o l a r  e l e c t r o l y s i s .  These r e s u l t s  

a r e  o f  importance i n  t h a t  t h e  o p e r a t i o n  of a b i p o l a r  system a t  

TABLE 1 

Hydrogen I s o t o p e  S e p a r a t i o n  F a c t o r s  on a S i n g l e  Bipolar  E l e c t r o d e  

HT 
a 

DT Tempzrature a 
c 

30 
35 
55 
90 

- 11.7 - + 1.0 
2.13 + 0.05 
2.09 T 0.03 10.8 + 0.7 
2.02 T - 0.03 11.4 - 0.5 
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408 RAMEY ET AL. 

h i g h  tempera ture  and h igh  c u r r e n t  d e n s i t y  t o  a c h i e v e  h i g h  

throughput  can be done without  s i g n i f i c a n t  l o s s  o f  s e p a r a t i v e  

e f f i c i e n c y  . 

POWER CONSUMPTION CONSIDERATIONS 

A major advantage o f  t h e  b i p o l a r  p r o c e s s  i s  i t s  a b i l i t y  t o  

consume l e s s  power t h a n  e q u i v a l e n t  convent iona l  e l e c t r o l y s i s .  

T h i s  r e d u c t i o n  i n  power consumption i s  p o s s i b l e  because of  d i f -  

f e r e n t  e l e c t r o c h e m i c a l  r e a c t  i o n s  o c c u r r i n g  a t  and w i t h i n  t h e  

b i p o l a r  e l e c t r o d e s  as compared wi th  t h o s e  of  normal e l e c t r o l y -  

s i s .  In convent iona l  water  e l e c t r o l y s i s ,  t h e  n e t  s t a n d a r d  

p o t e n t i a l  i s  -1 .229  v o l t s ,  whereas t h e  n e t  s t a n d a r d  p o t e n t i a l  

f o r  b i p o l a r  e l e c t r o l y s i s  i s  z e r o ;  t h e  o n l y  a d d i t i o n a l  p o t e n t i a l  

r e q u i r e d  is  t h e  " o v e r p o t e n t i a l "  n e c e s s a r y  t o  d r i v e  t h e  r e a c t i o n  

a t  an a p p r e c i a b l e  r a t e .  In a d d i t i o n ,  no gas  is  formed a t  e i t h e r  

s u r f a c e  of  t h e  b i p o l a r  e l e c t r o d e  and t h e r e f o r e  t h e  p o t e n t i a l  

d r o p  a t  t h e  e l e c t r o d e - e l e c t r o l y t e  i n t e r f a c e  is  reduced.  

Power consumed by an e l e c t r o l y t i c  c e l l  is  t h e  product  of 

t h e  t o t a l  cel l  v o l t a g e  and the cell c u r r e n t .  However, a d i r e c t  

comparison of  power consumption o f  b i p o l a r  e l e c t r o l y s i s  with 

normal e l e c t r o l y s i s  based s o l e l y  on t h e i r  r e s p e c t i v e  s i n g l e  ce l l  

v o l t a g e s  should not  be made. For one r e a s o n ,  when u s i n g  t h e  

b i p o l a r  e l e c t r o d e  concept  as a m u l t i s t a g e  s e p a r a t i o n  system, it 

must be  remembered t h a t  a b i p o l a r  e l e c t r o d e  cannot e x i s t  wi thout  

t h e  usua l  t e r m i n a l  e l e c t r o d e s .  T h e r e f o r e  t h e  t o t a l  v o l t a g e  of a 

m u l t i s t a g e  b i p o l a r  system w i l l  always i n c l u d e  t h e  v o l t a g e  asso-  

c i a t e d  with one normal e l e c t r o l y s i s  ce l l .  

b i p o l a r  e l e c t r o l y s i s  power consumption, c o n s i d e r a t i o n  must be 

g i v e n  t o  t h e  s p e c i f i c  s e p a r a t i o n  t a s k  and t o  how b i p o l a r  

e l e c t r o l y s i s  can  b e s t  approximate an i d e a l  s r p a r a t  i o n  cascade ,  

Such an a n a l y s i s  of  power consumption w i l l  be shown i n  t h e  

fo l lowing  s e c t i o n s .  

In o r d e r  t o  compare 
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BIPOLAR ELECTROLYSIS 409 

MULTIBIPOLAR CELL THEORY AND EXPERIMENTAL RESULTS 

A s i n g l e  b i p o l a r  e l e c t r o d e  p laced  between t e r m i n a l  e l e c t r o -  

d e s  c reaLes  a c e l l  wi th  two s e p a r a t i o n  s t a g e s ;  s e p a r a t i o n  occurs  

a t  t h e  b i p o l a r  e l e c t r o d e  as w e l l  as a t  t h e  t e r m i n a l  cathode.  

Addi t ion  o f  11 b i p o l a r  e l e c t r o d e s  e s t a b l i s h e s  a b i p o l a r  "cascade" 

w i t h  J = n + 1 s e p a r a t i o n  s t a g e s .  With t h i s  arrangement ,  a f low 

o f  hydrogen i s o t o p e s  (W) i s  e s t a b l i s h e d  through t h e  system 

toward t h e  t e r m i n a l  ca thode  ( s e e  F i g .  2 ) .  Enrichment of t h e  

h e a v i e r  i s o t o p e  occurs  i n  t h e  aqueous phase a d j a c e n t  t o  t h e  

c a t h o d i c  s i d e  of each b i p o l a r  e l e c t r o d e .  To achieve  cont inuous  

i s o t o p e  s e p a r a t i o n ,  aqueous m a t e r i a l  enr iched  i n  t h e  heavy 

i s o t o p e  must be swept away from t h e  ca thode  s u r f a c e  and c i r c u l a t e d  

through each e l e c t r o l y t e  compartment c o u n t e r c u r r e n t  t o  t h e  

hydrogen t r a n s p o r t .  I n  p r a c t i c e  t h e  feed s t ream (F)  e n t e r s  t h e  

t e r m i n a l  ca thode  compartment and a product  ( P ) ,  enr iched  i n  t h e  

heavy i s o t o p e ,  is  withdrawn from t h e  t e r m i n a l  anode compartment 

such t h a t  F = W + P. (The W s t ream e x i t i n g  from t h e  t e r m i n a l  

ca thode  compartment i s  d e p l e t e d  i n  t h e  h e a v i e r  i s o t o p e s  wi th  

r e s p e c t  t o  t h e  feed and may be cons idered  t h e  "waste s t ream.")  

S t e a d y - s t a t e  cascade  t h e o r y  can be used t o  c a l c u l a t e  t h e  

number of s t a g e s  needed f o r  t h e  d e s i r e d  s e p a r a t i o n ,  t h e  l o c a l  

F 

W 7 l 1  I I 4 I  

- 
I 

(HYDROGEN FLOW) 

1 
I f I I_, 

W + P  - 
FIGURE 2 .  A schematic  f low diagram of a b i p o l a r  e l e c t r o l y s i s  

cascade  f o r  hydrogen i s o t o p e  s e p a r a t i o n .  
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410 RAMEY ET AL. 

i n t e r s t a g e  f low r a t e s ,  composi t ions ,  and o t h e r  d e s i g n  d e t a i l s .  

A mathematical  model w a s  d e r i v e d  ( 5 )  s p e c i f i c a l l y  f o r  b i p o l a r  

e l e c t r o l y s i s .  

T o t a l  enrichment ( i , e , ,  t o t a l  i n c r e a s e  i n  heavy i s o t o p e  

c o n c e n t r a t i o n  from feed t o  product )  f o r  t h e  e n r i c h i n g  s e c t i o n  of 

a b i p o l a r  cascade wi th  a flow scheme as  i l l u s t r a t e d  i n  F ig .  2 

may be expressed  a s  

mF = h p ,  

where 

q , m p  = mole f r a c t i o n s  of  t h e  heavy i s o t o p e  in t h e  feed 

a 

J 

Equat ion 

n ec e s s a r y  

mp and t o  

e l e c t r o l y  

and product  s t r e a m s ,  r e s p e c t i v e l y ,  

- - _ _ _  
1 - P/F 

= s i n g l e  s t a g e  b i p o l a r  s e p a r a t i o n  f a c t o r ,  

= t o t a l  number of  s e p a r a t i o n  s t a g e s  i n  any s e c t i o n  

w i t h  s t a g e  number one be ing  t h e  b i p o l a r  e l e c t r o d e  

a d j a c e n t  t o  t h e  t e r m i n a l  anode. 

11 i s  used t o  c a l c u l a t e  t h e  number of  s t a g e s  (J) 
t o  e n r i c h  t h e  heavy i s o t o p e  t o  a d e s i r e d  c o n c e n t r a t i o n  

c a l c u l a t e  t h e  i n t e r s t a g e  i s o t o p e  composi t ion i n  t h e  

e throughout  a cascade.  

I s o t o p e s  may e x i t  t h e  terminal-anode compartment e i t h e r  by 

t h e  product  s t ream (PI o r  by t h e  s t ream of i s o t o p e s  which per- 

meate t h e  b i p o l a r  e l e c t r o d e  a d j a c e n t  t o  t h e  t e r m i n a l  anode. The 

product  s t ream c o n t a i n s  a known q u a n t i t y  of  e l e c t r o l y t e .  

However, t h e  i s o t o p e  s t ream which e x i t s  through t h e  b i p o l a r  

e l e c t r o d e  l e a v e s  t h e  e l e c t r o l y t e  behind.  T h e r e f o r e ,  t h e  con- 

c e n t r a t i o n  of  e l e c t r o l y t e  i n  t h e  product  s t ream and i n  t h e  

terminal-anode compartment i n c r e a s e s  by a f a c t o r  e q u a l  t o  t h e  

volume r e d u c t i o n  r a t i o  (F /P) .  With a t y p i c a l  F/P r a t i o  of f i v e  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



BIPOLAR ELECTROLYSIS 41 1 

o r  more, t h e  e l e c t r o l y t e  i n  t h e  terminal-anode compartment w i l l  

e v e n t u a l l y  s o l i d i f y  u n l e s s  it is  removed by an a u x i l i a r y  p r o c e s s .  

E l e c t r o l y t e  b u i l d u p  i n  any o t h e r  i n t e r s t a g e  compartment w i l l  not  

o c c u r  because t h e  e l e c t r o l y t e  l e f t  behind by an e x i t i n g  hydrogen 

i s o t o p e  s t ream w i l l  be c o u n t e r a c t e d  by a s t ream of hydrogen 

i s o t o p e s  e n t e r i n g  from an a d j a c e n t  compartment. 

Cont inuous e l e c t r o l y t e  removal was demonstrated success-  

f u l l y  i n  a long-term experiment us ing  a s p r a y  d r i e r - r e a c t o r  as  

a n  i n t e g r a l  p a r t  of  I h e  b i p o l a r  e l e c t r o l y s i s  cascade (5). I n  

t h i s  a u x i l i a r y  p r o c e s s ,  sodium hydroxide i s  cont inuous ly  removed 

i n  a c i r c u l a t i n g  loop  system by convers ion  t o  sodium carbonate  

w i t h  CO2. 

by e v a p o r a t i o n ,  is  r e t u r n e d  t o  t h e  anode compartment. 

The w a t e r ,  as it i s  removed from t h e  sodium c a r b o n a t e  

S e v e r a l  l a b o r a t o r y  experiments  were performed u s i n g  small 

m u l t i - b i p o l a r  c e l l s .  In a t y p i c a l  exper iment ,  t h e  ce l l  was i n i -  

t i a l l y  f i l l e d  wi th  feed o f  equal  t r i t i u m  c o n c e n t r a t i o n  t o  t h a t  

which would be fed  c o n t i n u o u s l y  t o  t h e  c e l l  dur ing  t h e  e x p e r i -  

ment. A f t e r  f i l l i n g ,  t h e  m u l t i - b i p o l a r  c e l l  w a s  opera ted  a t  

c o n s t a n t  c u r r e n t  u n t i l  s t e a d y  s t a t e  c o n d i t i o n s  were o b t a i n e d .  

One such experiment with f o u r  b i p o l a r  e l e c t r o d e s  (GF-7) was 

o p e r a t e d  f o r  a t o t a l  of  24 d a y s ,  8 days of which were a t  s t e a d y  

s t a t e .  Solv ing  Equat ion  [ I1  by t r i a l  and e r r o r ,  t h e  s i n g l e  

s t a g e  s e p a r a t i o n  f a c t o r  f o r  experiment  GF-7 was found t o  be 

0 4 - I ~  = 6 . 3 .  A t  t h e  end of  t h i s  experiment ,  samples taken  from 

each  i n t e r s t a g e  compartment were analyzed f o r  t r i t i u m .  F i g u r e  3 

shows t h e  r e s u l t a n t  t r i t i u m  c o n c e n t r a t i o n  p r o f i l e  through t h e  

cascade .  In t h i s  c a s e  n e a r l y  a l l  enrichment had t a k e n  p l a c e  i n  

t h e  f i r s t  two s t a g e s ;  t h e  o t h e r  t h r e e  s t a g e s  would have 

e x h i b i t e d  more s e p a r a t i o n  performance i f  a s m a l l e r  P/F r a t i o  had 

been used. However, without  c o n t i n u o u s l y  removing e l e c t r o l y t e  

from t h e  anode compartment a r e l a t i v e l y  h igh  P/F r a t i o  was 

n e c e s s a r y .  

Another m u l t i b i p o l a r  experiment (GF-9) was performed us ing  

a new c e l l  d e s i g n .  T h i s  c e l l  conta ined  t h r e e  s e p a r a t i o n  s t a g e s  
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412 RAMEY ET AL. 

4 0 - ~  I I I I 

5 
5 4 3 2 4 0 

FEED 

aHT= 6.87 

P/F = 7.58 X 40-' 

-CALCULATED 
0 MEASURED 

3 2 4 0  
ANODE FEED ANODE 

STAGE NUMBER. J STAGE NUMBER, J 

FIGURE 3 .  I n t e r s t a g e  composi t ions o c c u r r i n g  i n  b i p o l a r  cascade 
exper iments  GF-7 and GF-9. 

( 2  b i p o l a r  e l e c t r o d e s )  and employed a cont inuous  e l e c t r o l y t e  

removal system a t t a c h e d  t o  t h e  anode compartment. A f t e r  49  days 

o f  o p e r a t i o n  a t  a n e a r  t o t a l  r e f l u x  c o n d i t i o n  (no product  

withdrawn),  t h e  system was forced  t o  a s t e a d y  s ta te  c o n d i t i o n  by 

withdrawing an i n c r e a s e d  amount of p r o d u c t ,  Experiment GF-9 w a s  

t h e n  opera ted  f o r  8 days  under t h e s e  c o n d i t i o n s  t o  a s s u r e  

s t e a d y  s t a t e  composi t ion throughout  t h e  cascade ,  Once a g a i n  t h e  

e x p e r i m e n t a l l y  observed t r i t i u m  c o n c e n t r a t i o n  between i n d i v i d u a l  

s t a g e s  was c l o s e l y  p r e d i c t e d  by Equat ion  [ l ] .  

ment more e f f i c i e n t  s e p a r a t i v e  u t i l i z a t i o n  of  a l l  s t a g e s  ( a s  

compared t o  experiment  GF-7) w a s  ach ieved ,  as shown i n  Fig.  3 ,  

a s  t h e  r e s u l t  o f  u s i n g  a lower P/F r a t i o  (7.58 x The 

s i n g l e  s t a g e  s e p a r a t i o n  f a c t o r  was c a l c u l a t e d  from Equat ion  [ l ]  

and found t o  be "HT = 6 . 9 .  

I n  t h i s  e x p e r i -  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



BIPOLAR ELECTROLYSIS 4 1 3  

S i n g l e  b i p o l a r  ce l l  exper iments  i n d i c a t e d  t h a t  at 90°C t h e  

pro t ium-t r i t ium s e p a r a t i o n  f a c t o r ,  “HT, should be 11 ( s e e  Table  

1 ) .  I n  t h e  m u l t i s t a g e  exper iments  d e s c r i b e d  above, t h e  s i n g l e  

s t a g e  s e p a r a t i o n  f a c t o r s  were c a l c u l a t e d  t o  be 6 . 3  and 6 . 9 ,  

r e s p e c t i v e l y .  No d e f i n i t i v e  reason  f o r  t h e s e  lower s e p a r a t i o n  

f a c t o r s  can be g iven  a t  t h i s  t i m e ;  p o s s i b l e  e x p l a n a t i o n s  could 

i n c l u d e  backmixing i n  t h e  c e l l .  We have reason t o  b e l i e v e  t h a t  

t h e s e  low s e p a r a t i o n  f a c t o r s  a r e  not  i n h e r e n t  with m u l t i s t a g e  

b i p o l a r  e l e c t r o l y s i s .  

protium-deuterium have y i e l d e d  a s e p a r a t i o n  f a c t o r  of  approxima- 

t e l y  5 which was what was expec ted  a t  90°C. 

Other  m u l t i s t a g e  experiments  wi th  

Comparison of  t h e  d a t a  from t h e  two m u l t i s t a g e  c e l l  e x p e r i -  

ments  and t h e  d a t a  a s  c a l c u l a t e d  by Equat ion  [ l ]  f o r  t h e s e  

exper iments ,  e s t a b l i s h e s  Equat ion [ I ]  a s  an a c c u r a t e  mathematical  

model f o r  b i p o l a r  e l e c t r o l y L i c  i s o t o p e  s e p a r a t i o n .  An independent  

a n a l y s i s  of t h e s e  same m u l t i s t a g e  c e l l  experiments  (8)  h a s  shown 

t h a t  modeling by u s i n g  c o n v e n t i o n a l  McCabe-Thiele techniques  

i s  e q u a l l y  v a l i d .  

McCabe-Thiele a n a l y s i s  of  experiment  GF-7, F ig .  4 ,  c l e a r l y  

i l l u s t r a t e s  t h a t  poor s e p a r a t i o n  e f f i c i e n c y  a s  observed f o r  

t h r e e  of t h e  f i v e  s t a g e s  r e s u l t e d  from t h e  o p e r a t i n g  l i n e  i n  t h e  

McCabe-Thiele graph be ing  pinched t o  t h e  e q u i l i b r i u m  l i n e  a t  t h e  

f e e d  p o i n t ,  The s l o p e  of  t h e  o p e r a t i n g  l i n e  i s  c o n t r o l l e d  by 

t h e  P/F r a t i o  [ s l o p e  = 1/(1 - P / F ) ] .  F i g u r e  4 a l s o  i l l u s t r a t e s  

t h e  observed improvement i n  s e p a r a t i o n  e f f i c i e n c y  wi th  t h e  

s m a l l e r  P/F r a t i o  used i n  experiment  GF-9. I n t e r s t a g e  com- 

p o s i t i o n s  and t h e  s e p a r a t i o n  f a c t o r s  c a l c u l a t e d  u s i n g  t h e  

McCabe-Thiele a n a l y s i s  agree  v e r y  w e l l  wi th  t h e  d a t a  d e r i v e d  

from Equat ion  [ I ]  and t h e  t r i t i u m  c o n c e n t r a t i o n  p r o f i l e s  shown 

i n  F i g .  3 .  From t h e s e  d e s c r i b e d  a n a l y s e s ,  it is  e v i d e n t  t h a t  

more e f f i c i e n t  u t i l i z a t i o n  of  s t a g e s  i s  achieved a t  a lower P / F  

r a t i o .  
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BIPOLAR ELECTROLYSIS 415 

OPTIMUM BIPOLAR ELECTROLYSIS CASCADE DESIGN 

A m u l t i b i p o l a r  c e l l ,  as shown i n  F i g u r e  2 ,  i s  i n h e r e n t l y  a 

"square cascade",  i . e . ,  t h e  mass flow ( a s  d e f i n e d  by t h e  

c o n s t a n t  c u r r e n t  flow) i s  t h e  same throughout  t h e  e n t i r e  c e l l .  

Cascade t h e o r y  ( 9 )  p r e d i c t s  t h a t  an i d e a l  s e p a r a t i o n  cascade 

should  be t a p e r e d  from s t a g e  t o  s t a g e  wi th  a maximum c r o s s  sec- 

t i o n  o c c u r r i n g  a t  t h e  feed  poinl;. T h i s  t a p e r i n g  i s  t h e o r e t i -  

c a l l y  more e f f i c i e n t  t h a n  a square  cascade because t o t a l  cascade  

volume and energy requi rements  are minimized. I f  a t a p e r e d  

cascade  is not  p o s s i b l e ,  i t s  e f f i c i e n c y  can be approximated by a 

"squared-off"  cascade c o n s i s t i n g  o f  a series of square  cascade 

s e c t i o n s  o f  d i m i n i s h i n g  s i z e  from t h e  feed p o i n t ,  connected i n  a 

ser ies  arrangement .  

I n  a squared-off  b i p o l a r  e l e c t r o l y s i s  cascade,  t h e r e  are 

t o t a l  square  s e c t i o n s  wi th  2 being  any s p e c i f i c  square  s e c t i o n  

w i t h i n  t h e  cascade  ( s e e  F ig .  5). The square  s e c t i o n  wi th  d = 1 

i s  d e f i n e d  a s  t h e  f i n a l  e n r i c h i n g  s e c t i o n  of t h e  cascade .  

Composition of  t h e  feed  t o  s e c t i o n  4 o f  t h e  cascade can be 

e x p r e s s e d  a s  

where A 

B 

C 

p d  

j = O  

= Ld/Ld+l t h e  product  t o  feed r a t i o  f o r  square  

s e c t i o n  d ,  
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416 RAMEY ET AL. 

Squared - o f f  Bipolar Cascade Nomenclature 

FIGURE 5.  Squared-off b i p o l a r  cascade  nomenclature .  

md+l , l  = mole f r a c t i o n  of  heavy i s o t o p e  i n  s t ream used as 

f e e d  f o r  s e c t i o n  d ,  

m d , l  = mole f r a c t i o n  of heavy i s o t o p e  i n  t h e  product  

s t r e a m  l e a v i n g  s e c t i o n  d, 

Jd = t o t a l  number of s t a g e s  i n  s e c t i o n  d ,  

S t a r t i n g  from t h e  product  end of  the squared-off  cascade ,  t h e  

feed composi t ion t o  each square  s e c t i o n  can be c a l c u l a t e d  g iven  

J d ,  Pd and a. 
c o n c e n t r a t i o n  g r a d i e n t  through each square  sect ion .  

U s e  of  Equat ion  121 a l lows  c a l c u l a t i o n  o f  t h e  

In g e n e r a l ,  d e s i g n  of  a squared-off  cascade  is  accomplished 

by assuming t h a t  t h e  optimum number of  s e p a r a t i o n  s t a g e s  

r e q u i r e d  fo r  a s p e c i f i c  enr ichment  can be  d e s c r i b e d  by i d e a l  

cascade  t h e o r y ,  The t o t a l  number o f  square  s e c t i o n s  and t h e  

number o f  s e p a r a t i o n  s t a g e s  per  square  s e c t i o n  a r e  then  

a r b i t r a r i l y  s e l e c t e d .  The t o t a l  number of  s e p a r a t i o n  s t a g e s  i n  
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BIPOLAR ELECTROLYSIS 417 

the  squared-off  cascade must e q u a l  t h e  t o t a l  number of s t a g e s  of  

t h e  i d e a l  cascade. Using t h e  mathematical  model of  a squared- 

o f f  cascade  (Equat ion [ 21 ) , adjustment  of t h e  product- to-feed 

r a t i o  f o r  each square  s e c t i o n  i s  performed such t h a t  t h e  product  

s t r e a m  composi t ion o f  t h a t  square  s e c t i o n  matches t h e  com- 

p o s i t i o n  expected i n  t h e  i d e a l  cascade .  Once t h i s  procedure is 

completed,  t h e  s i z e  of  t h e  s e p a r a t i o n  cascade i s  f i x e d  and t h e  

t o t a l  power requi rements  f o r  t h e  assumed c o n d i t i o n s  can be 

c a l c u l a t e d .  The minimum power requirement  f o r  a p a r t i c u l a r  

enr ichment  i s  o b t a i n e d  by s y s t e m a t i c a l l y  r e p e a t i n g  t h i s  proce- 

d u r e  wi th  vary ing  numbers o f  square  s e c t i o n s .  The advantages of 

the b i p o l a r  s e p a r a t i o n  p r o c e s s  over  normal e l e c t r o l y s i s  can b e s t  

b e  i l l u s t r a t e d  by apply ing  i t  to  a s p e c i f i c  s e p a r a t i o n  t a s k .  

One p o s s i b l e  s p e c i f i c  a p p l i c a t i o n  of b i p o l a r  e l e c t r o l y t i c  

enr ichment  is  t h e  removal o f  t r i t i u m  from heavy water  used a s  

t h e  moderator  and c o o l a n t  i n  a n u c l e a r  r e a c t o r .  The o b j e c t i v e  

would be t o  reduce t h e  t r i t i u m  content  i n  t h e  coolan t  t o  an 

u l t i m a t e  e q u i l i b r i u m  t r i t i u m  c o n c e n t r a t i o n  o f  approximately one- 

s i x t h  o f  i t s  s t e a d y  s t a t e  l e v e l ,  e . g . ,  reducing  20 C i / l  con- 

c e n t r a t i o n  t o  3 . 3  C i / l .  S imul taneous ly ,  it would be d e s i r a b l e  

t o  e n r i c h  t h e  t r i t i u m  t o  10 mole percent  such t h a t  o t h e r  

e s t a b l i s h e d  e n r i c h i n g  methods could be used t o  e v e n t u a l l y  o b t a i n  

pure  t r i t i u m ,  which h a s  i n t r i n s i c  v a l u e .  

The t o t a l  e l e c t r o l y t i c  power r e q u i r e d  f o r  a b i p o l a r  cascade  

system f o r  t h i s  example is  a f u n c t i o n  of  t h e  t o t a l  number o f  

s q u a r e  s e c t i o n s  (D) a s  is  shown i n  F igure  6 .  The minimum power 

requi rement  w i l l  occur  i n  a range from 6 < D < 8 f o r  a l l  v a l u e s  

o f  t h e  c u r r e n t  d e n s i t i e s  shown. The minimum l e v e l  of power 

r e q u i r e d  f o r  t h i s  b i p o l a r  cascade  would be less than  t h a t  re- 

q u i r e d  f o r  an e q u i v a l e n t  i d e a l  cascade  wi th  normal e l e c t r o l y t i c  

c e l l s " ,  e . g . ,  a t  0 . 3  A 

*Data f o r  t h e  power r e q u i r e d  f o r  normal e l e c t r o l y s i s  were t a k e n  

from a 

d a t a  f o r  power r e q u i r e d  f o r  b i p o l a r  e l e c t r o l y s i s  are g iven  i n  

g i v e n  i n  r e f e r e n c e  ( 5 ) .  

t h e  power consumption f o r  t h e  

review of  commercial e l e c t r o l y s i s  by Lu and S r i n i v a s a n  (10); 
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418 RAMEY ET AL. 

b i p o l a r  squared-off  cascade  could be expected t o  be approxima- 

t e l y  75% o f  t h a t  consumed i n  normal e l e c t r o l y s i s .  

A des ign  summary of t h e  optimum squared-off  b i p o l a r  cascade 

and an i d e a l  cascade  is  g iven  i n  Table  2 .  The optimum squared- 

o f f  b i p o l a r  cascade  was s e l e c t e d  with D = 5 s q u a r e  s e c t i o n s ,  

i n s t e a d  o f  7 ,  which would g i v e  t h e  minimum power requi rement .  

T h i s  w a s  done because t h e  s i z e  of  i h e  feed s e c t i o n  is  approxi-  

mate ly  6% s m a l l e r  and t h e  t o t a l  i n t e r s e c t i o n a l  flows a r e  approxi-  

mate ly  14% less wi th  5 t h a n  with 7 square  s e c t i o n s .  S p e c i a l  

c o n s i d e r a t i o n  should be g iven  t o  s i z e  d i f f e r e n c e s  of  t h e  casca-  

d e s  i n  t h a t  when t r i t i u m  i s  be ing  s e p a r a t e d ,  containment of 

equipment t o  avoid  personnel  r a d i a t i o n  exposure and i n g e s t i o n  is  

r e q u i r e d ,  t h e  c o s t  of  which d iminishes  with p h y s i c a l  s i z e .  In 
p a r t i c u l a r ,  t h e  c r o s s - s e c t i o n a l  a r e a  of  t h e  b i p o l a r  feed s t a g e  

TABLE 2 

Comparison of  Design Parameters  f o r  a Squared-off Bipolar  Cascade 
and an I d e a l  Cascadea 

Squared-Of f 
I d e a l  B i p o l a r  

Cascade Cascade 

T o t a l  S e p a r a t i o n  S t a g e s  28 
Number of  I n d i v i d u a l  S e c t i o n s  28 
Cascade Feed Rate ( 1  DpO/da ) 2235 
Feed P o i n i  Cross S e c t i o n  (m I ) 92 
T o t a l  Gas Flow; D2 + 02 (m3/day) 14,100 
T o t a l  E l e c t r o d e  M a t e r i a l  Cost (K$)b 61 
E l e c t r o l y t i c  Power (KW) 2006 
E l e c t r o l y t i c  Power Cost ($ /day)c  963 
T o t a l  I n t e r s e c t i o n  Aqueous Flow ( l / d a y )  7627 

E l e c t r o l y t e  Recycle  Rate ,  a s  Na2C03 
E l e c t r o l y t e  Maintenance Cost ($ /day)  120 

(kg/day)  2200 

28 
5 

1541 
64 

3460 
15 1 

1581 
759 

1865 
30 

500 

aProduct  flow r a t e  4 .44 x L D2O/day; s i n g l e  s t a g e  s e p a r a t i o n  
f a c t o r  cx = 2 ;  c u r r e n t  d e n s i t y  0 . 3  A cmq2. 

bAssumes 2 . 5  x cm t h i c k  b i p o l a r  e l e c t r o d e s  at 485 $/m2 and 
193 $/m2 f o r  normal e l e c t r o l y s i s  e l e c t r o d e s .  

CAssumes 0.02 $/KWH power c o s t ,  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



BIPOLAR ELECTROLYSIS 419 

i s  30% less t h a n  f o r  an i d e a l  cascade.  

g e n e r a t e d  u s i n g  a squared-off  b i p o l a r  cascade i s  only one-fourth 

o f  t h a t  i n c u r r e d  us ing  an i d e a l  cascade.  T o t a l  f low of t h e  

e n r i c h e d  aqueous phase ( i n t e r s e c t i o n a l  aqueous flow) f o r  t h e  

i d e a l  cascade  is  approximately f o u r  times g r e a t e r  t h a n  t h a t  f o r  

t h e  squared-off  b i p o l a r  cascade;  e l e c t r o l y t e  maintenance c o s t  

and t h e  e l e c t r o l y t e  r e c y c l e  rate r e f l e c t  t h i s  same i n c r e a s e  i n  

magnitude.  Thus t h e  squared-off  b i p o l a r  e l e c t r o l y s i s  cascade 

o f f e r s  a s m a l l e r ,  more compact s e p a r a t i o n  system which i s  

expec ted  t o  be easier and less expensive t o  main ta in  f o r  

r a d i o a c t i v e  containment ,  

The power c o s t  f o r  t h i s  b i p o l a r  cascade a t  0 . 3  A cm-2 i s  esti-  

mated t o  be 21% less  t h a n  f o r  t h e  i d e a l  cascade ,  which is  

s l i g h t l y  h i g h e r  t h a n  i f  7 s q u a r e  s e c t i o n s  were used ( s e e  F ig .  6 ) .  

The r e l a t i v e l y  l a r g e  s a v i n g s  i n  m a t e r i a l  flow appears  t o  j u s t i f y  

such an i n c r e a s e  i n  power c o s t .  T h i s  e s t i m a t e  is  based on 

measured v o l t a g e s  a c r o s s  b i p o l a r  Pd-25% Ag e l e c t r o d e s  ( 5 ) .  No 

s p e c i a l  e f f o r t s  were made t o  d e c r e a s e  t h e  o v e r v o l t a g e  a t  t h e s e  

e l e c t r o d e s .  There are reasons  t o  b e l i e v e  t h a t  t h i s  o v e r v o l t a g e  

may be lower i f  l a r g e  r e a l - s u r f a c e  a r e a  e l e c t r o d e s  (such a s  

porous Ni) were t o  be used.  

0 . 2  v o l t s  a t  0.3 A cm-2 c u r r e n t  d e n s i t y ,  f o r  example, w i l l  y i e l d  

a power consumption of  30% less  t h a n  f o r  t h e  i d e a l  cascade  a s  

compared t o  20% l ess  i n  our  prev ious  example. 

The volume of  gas  

A r e d u c t i o n  i n  o v e r v o l t a g e  of 

SUMMARY 

Palladium-25% s i l v e r  a l l o y  was found t o  be s u i t a b l e  as  a 

m a t e r i a l  f o r  b i p o l a r  e l e c t r o d e s  p e r m i t t i n g  h i g h  hydrogen 

throughput  wi th  chemical  and mechanical  s t a b i l i t y .  B i p o l a r  

s e p a r a t i o n  f a c t o r s ,  a t  h i g h  c u r r e n t  d e n s i t y ,  us ing  NaOH (NaOD) 

a s  t h e  e l e c t r o l y t e ,  a r e  l a r g e  ( ~ D T  = 2 .0 ,  ~ H T  = 11 a t  90°C). 

C a l c u l a t e d  mass t r a n s f e r ,  a s  determined us ing  a squared-off  

cascade  model, t o g e t h e r  with observed e l e c t r i c a l  power con- 
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A SQUARED-OFF BPE CASCADE CAN CONSUME LESS 
POWER THAN AN IDEAL CASCADE OF NORMAL 

ELECTROLYSIS CELLS 
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FIGURE 6 .  The minimum power r e q u i r e d  i n  our  example f o r  a 
b i p o l a r  e l e c t r o l y s i s  cascade f o r  d e t r i t i a t i o n  of 
heavy water w i l l  occur  when t h e  t o t a l  number of  
square  s e c t i o n s  i s  between 6 and 8. I n  a l l  c a s e s  
t h e  b i p o l a r  e l e c t r o l y s i s  power ( c u r v e s )  a t  t h e i r  
minimum a r e  lower t h a n  t h e  power r e q u i r e d  f o r  a 
normal e l e c t r o l y s i s  cascade ( s h o r t  l i n e  segments 
a t  r igh t . ) .  

sumption sugges t  t h a t  about 21  p e r c e n t  less power w i l l  be re- 

q u i r e d  f o r  b i p o l a r  e l e c t r o l y t i c  s e p a r a t i o n  a s  compared with 

normal e l e c t r o l y s i s .  T h i s  e s t i m a t e  o n l y  r e p r e s e n t s  t h e  p r e s e n t  

l e v e l  o f  development. 
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BIPOLAR ELECTROLYSIS 421 

S e p a r a t i o n  of  t r i t i u m  from l i g h t  and heavy water  u s i n g  t h e  

b i p o l a r  e l e c t r o l y s i s  process  appears  t o  o f f e r  s i g n i f i c a n t  advan- 

t a g e s  as compared with d i r e c t  e l e c t r o l y s i s .  

e f f i c i e n c y  of  t h e  m u l t i b i p o l a r  c e l l  o f f e r  g r e a t  p o t e n t i a l  f o r  

d e s i g n i n g  a v e r y  compact s e p a r a t i o n  f a c i l i t y  which, i n  t u r n ,  

w i l l  m i n i i z e  containment c o s t  when h igh  t r i t i u m  c o n c e n t r a t i o n s  

a r e  encountered.  

The s i m p l i c i t y  and 
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